NOAA Upgrades the GFS Model
NOAA’s main weather model, the GFS (Global Forecast System), is undergoing a significant upgrade to include a new dynamical core called the Finite-Volume Cubed-Sphere (FV3).
This upgrade will drive global numerical weather prediction into the future with improved forecasts of severe weather, winter storms, and tropical cyclone intensity and track.
NOAA research scientists originally developed the FV3 as a tool to predict long-range weather patterns at time frames ranging from multiple decades to interannual, seasonal and subseasonal. In recent years, creators of the FV3 at NOAA’s Geophysical Fluid Dynamics Laboratory expanded it to also become the engine for NOAA’s next-generation operational GFS.
The FV3-based GFS brings together the superior dynamics of global climate modeling with day-to-day reliability and speed of operational numerical weather prediction. Additional enhancements to the science that produce rain and snow in the GFS also contribute to the improved forecasting capability of this upgrade.
The GFS upgrade underwent rigorous testing led by NOAA’s National Centers for Environmental Prediction (NCEP) Environmental Modeling Center and NCEP Central Operations that included more than 100 scientists, modelers, programmers and technicians from around the country.
With real-time evaluations for a year alongside the previous version of the GFS, NOAA carefully documented the strengths of each. When tested against historic weather dating back an additional three years, the upgraded FV3-based GFS performed better across a wide range of weather phenomena.
Commenti